

NORTH CAROLINA AGRICULTURAL AND TECHNICAL STATE UNIVERSITY

THE GRID PROGRAM @ NCAT

Innovations in Graduate Education (IGE)

Graduate Research Engineer Identity Program

- Initiative stemming from our NSF IGE funding.
- Lectures and activities designed to prepare graduate students for research-based careers.
- Includes seminars on research skills development, networking, mentoring.
- Primarily for engineering students; open to all graduate students, though.

RESEARCH QUESTIONS

QI. Is there a relationship between **the** network relationships between students, their bridging and bonding social capital, and their **sense of identity as research** engineers?

Q2. Do students who participate in larger cliques also showcase higher levels of research engineer identity scores?

SURVEY ADMINISTRATION

Pilot study over three waves.

- I. Sample I: from mentoring program.
- 2. Sample 2: from Fall 2020 GRID.
- 3. Sample 3: outside GRID, but with matching characteristics.
- Total: N=86; Response rate: 51%

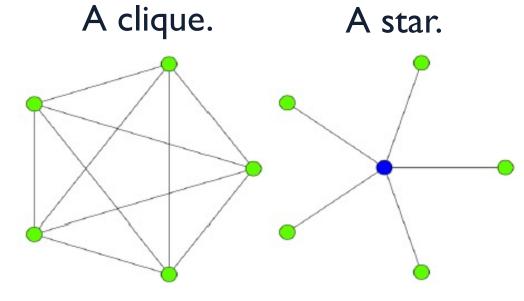
Research Engineer Network: A Network Analysis of Graduate Student Relationships

Chrysafis Vogiatzis ¹, PhD; Stephanie Teixeira-Poit ², PhD; Tobin Walton ², PhD; Grace Gowdy ², PhD; Bala Ram ², PhD ¹ University of Illinois, Urbana-Champaign, IL; ² North Carolina A&T State University, Greensboro, NC

METHODS

Measure development • Goal: develop a **Research Engineer** Identity Scale (REIS).

Data Collection	Focus Group Data Collection	Web-Based Survey Administration
alyses	Content Analysis of Qualitative Data	Statistical Analysis of Quantitative Data
Data Analyses	Research Engineer Identity Survey Development	Data Triangulation to Validate Research Identity Scale


- 7 focus groups with 51 Research Engineers from academia and industry.
- Identified key themes related to self-meanings associated with being a research engineer.
- Created pool of 36 items; PCA was then used to identify a subgroup of 6 items measuring one dimension of REI (α = .929).

Network analysis

Centrality & Structure participation study.

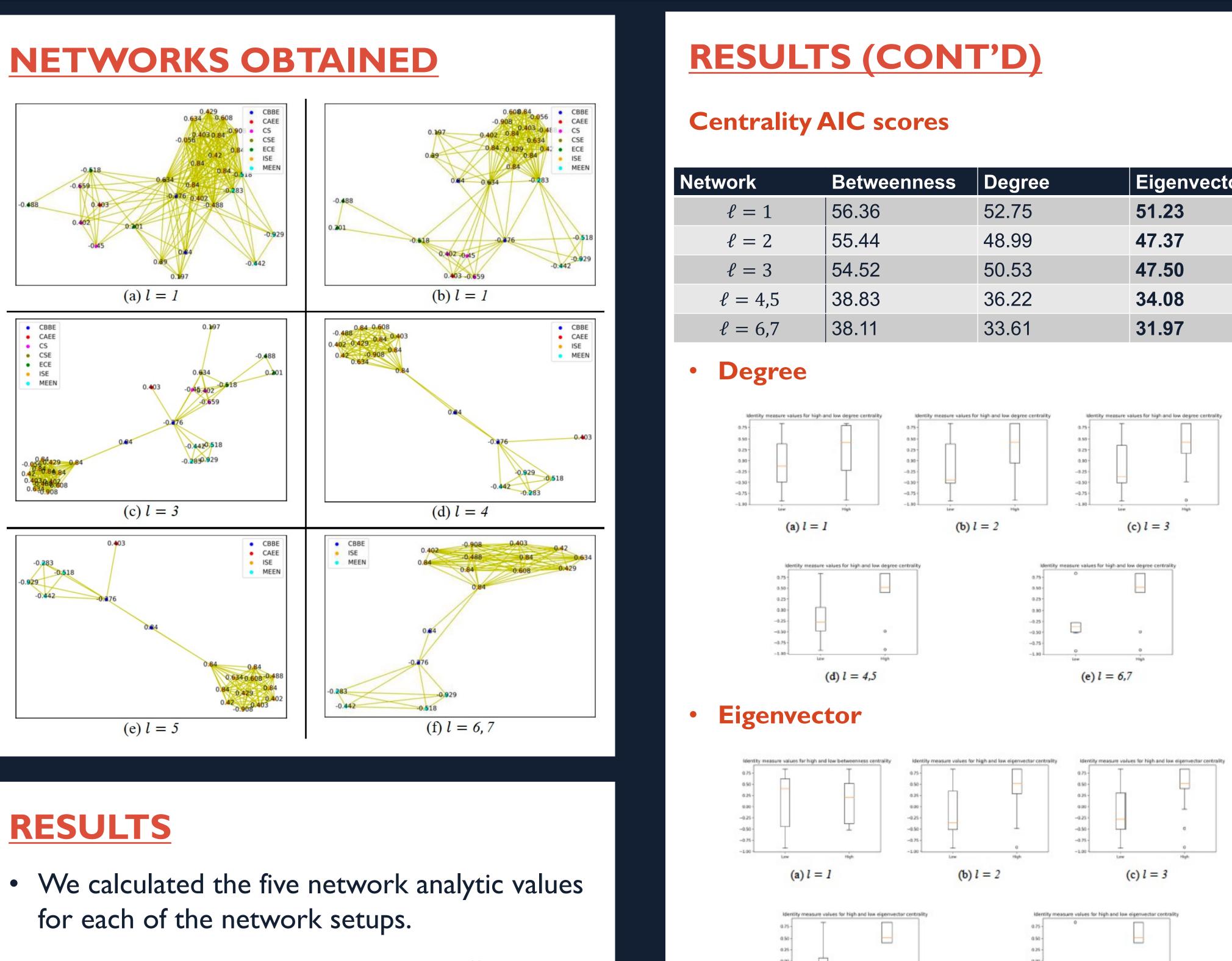
- Centrality
 - 1. Degree.
 - 2. Betweenness.
 - 3. Eigenvector.
- **Structures**
- I. Clique.
- 2. Induced stars.

 $\sum_{i \in V} x_i$ max s.t. $x_i + x_j \le l$, $\forall (i,j) \notin E$, $x_u = 1$, $x_i \in \{0, 1\},\$ $\forall i \in V.$

 $\sum_{i \in V} x_i$

 $x_i = 0,$

 $x_u = l$,

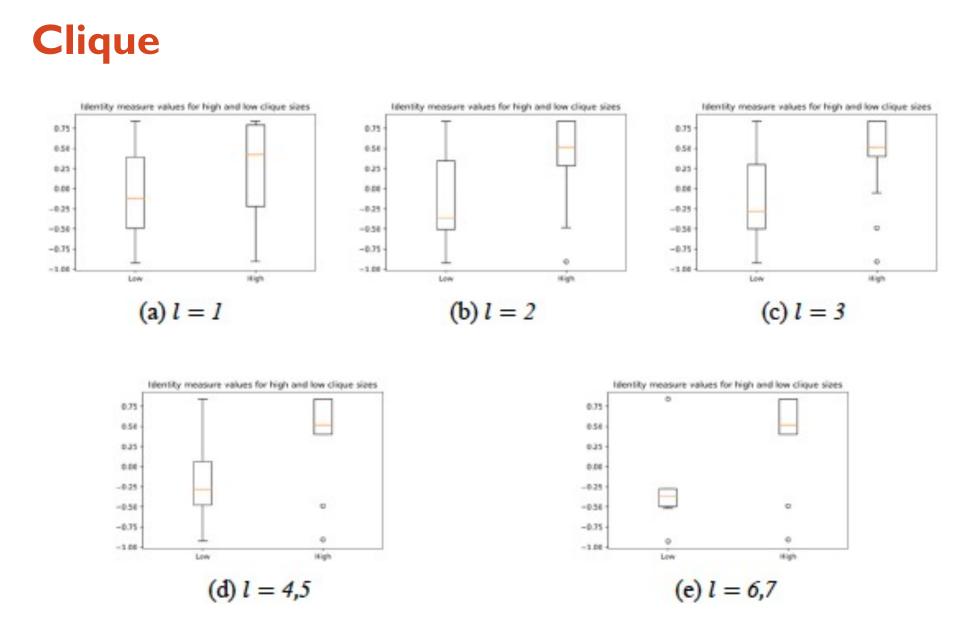

max

 $\forall (i,j) \in E: i \neq u, j \neq u,$ s.t. $x_i + x_j \le l$, $\forall i \in V: (i, u) \notin E$, $\forall i \in V.$ $x_i \in \{0, 1\},$

NETWORK GENERATION

We generate networks G(V, E) as follows:

- V: set of all students that answered 50% of the survey questions or more.
- E: all pairs of students that have registered for at least ℓ classes from the same department. • **Indirect** course relationships only.



• We then used regression to "predict" the measure of Research Engineer Identity based on centrality & structures.

Structures AIC scores

Network	Star	Clique
$\ell = 1$	55.35	50.51
$\ell = 2$	54.85	48.68
$\ell = 3$	54.42	49.77
$\ell = 4,5$	38.87	36.20
$\ell = 6,7$	37.87	33.86

Clique always outperforms star for a more parsimonious fit.

(d) l = 4,5**CONCLUSIONS**

-			
'k	Betweenness	Degree	Eigenvector
= 1	56.36	52.75	51.23
= 2	55.44	48.99	47.37
= 3	54.52	50.53	47.50
= 4,5	38.83	36.22	34.08
= 6,7	38.11	33.61	31.97

• Stricter (larger) values of ℓ lead to better fit models predicting Research Engineer Identity. Eigenvector centrality leads to best fit; betweenness centrality to the worst fit.

(e) l = 6,7

- Bonding and bridging social capital together lead to better fit models predicting Research Engineer Identity.
- Bridging social capital is not sufficient on its own to produce Research Engineer Identity..
- Clique size is a better predictor than Star for Research Engineer Identity.

Modeling research engineer identity should have both bonding and bridging social capital considerations.

Acknowledgment: This research was primarily supported by the National Science Foundation Award # 1856346.

